Failure to Isolate the First N-Nitrosiminium Cation

Latifa Chahoua, Milan Mesić, and James C. Fishbein*

Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109

Received August 22, 1995

Introduction

The synthesis of the SbCl₆ salt of the first N-nitrosiminium ion, 1, was reported, along with limited physical characterization.1 The purported isolation of this cation was claimed as evidence of the pervasive inter-

mediacy of N-nitrosiminium ions in the decomposition of carcinogenic α -acetoxy-N-nitrosamines.^{1,2} We had need of the ion, 1, as a precusor to various α -substituted nitrosamines in which we have an ongoing interest. We report here that the method briefly described¹ in fact gives the SbCl₆ salt of the simple iminium ion 2, and that the limited physical data originally reported indicate that

the salt of **2** was also the product in the initial¹ report.

Experimental Section

The solvent CH₂Cl₂ was dried by distillation from CaH₂. NOCl was generated according to the procedure of Schenk.³ The SbCl₅ and NOBF₄ were used as obtained from Aldrich Chemical Co. (Milwaukee, WI).

Slow addition to NOCl (0.56 g, 8.4 mmol), eq 1, in 20 mL of CH_2Cl_2 at $-30\ ^{\circ}C$ of 1 equivalent of imine (1 g, 8.4 mmol, in 10 mL of CH₂Cl₂) followed by addition of SbCl₅ (2.54 g, 8.4 mmol, in 5 mL of CH_2Cl_2) gave a faintly yellowed whitish precipitate, as reported.1 This was filtered and washed with additional CH2-Cl₂ and dried under vacuum. 1 H-NMR (CD₃CN) δ 3.59 (3H, d); 7.67 (2H, m); 7.90 (3H, m); 8.78 (1H, d); 10.4–11.25 (1H, t (br)). 13 C-NMR (CD₃CN) δ 39.70, 127.47, 131.05, 132.46, 138.73, 173.50. C, H, N analysis found: C, 21.09; H, 2.22; N, 3.04. Calcd for SbCl₆ salt of 1: C, 19.87; H, 1.88; N, 5.79. Calcd for SbCl₆ salt of 2: C, 21.13; H, 2.22; N, 3.08.

Results and Discussion

We had hoped to generate the α -hydroxy compound **3**, in order to study its decomposition chemistry, by directly injecting polar aprotic solutions of 1 into aqueous solutions. We have recently reported that the cation **1** is hydrated in predominantly aqueous media with rate constants on the order of 10⁶ s⁻¹. So we expected that, depending on the stability of 3, the proposed experiments using conventional spectrophotometry would give initial UV spectra consistent either with **3** ($\lambda_{max} \sim 230$ for the N-NO group) or, the ultimate product benzaldehyde (λ_{max}

Our suspicion about the identity of the product of our synthesis initially arose from the following observations. The solid material when dissolved in acetonitrile exhibited a $\lambda_{max} = 271$, quite similar to that reported previously¹ ($\lambda_{max} = 272$ nm, solvent unreported). An aliquot of a more concentrated solution of the salt in acetonitrile, when diluted 100-fold into buffered water (0.05 M cacodylic acid buffer, 50% anion), exhibited a $\lambda_{max}=268$ nm. This absorbance decayed over the course of 1 min $(t_{1/2} \sim 7 \text{ s})$, with an isosbestic point at 258 nm, to a product with a λ_{max} = 253, identical with the λ_{max} of benzaldehyde under identical conditions.

The ¹H-NMR analysis of the products of the decay of the salt in D₂O containing 20% CD₃CN indicated benzaldehyde and methylammonium ion only. No methanol was detected, in contrast to what was expected from previous analyses of products of reactions that involve the intermediacy of **1** in aqueous solutions.⁵

The ¹³C-NMR (CD₃CN) of the product of our synthesis contains a signal at δ 173.5, nearly identical with that (δ 172.1, solvent not reported) originally ascribed¹ to the iminium carbon of **1**, but all the spectral lines correlate quite well with the spectrum reported for 2 in HSO₃F/ SO₂ClF.⁶ The ¹H-NMR is inconsistent with the structure **1** in that it contains a broad triplet at δ 10.4–11.25 consistent with coupling of the NH in 2 to the nitrogen quadrapole, and the signal from the methyl group is split into a doublet by coupling with the NH.7 The 1H-NMR spectrum is nearly identical with that reported for 2 in HSO₃F-SbF₅-SO₂.8 Finally, the C and N elemental analyses are inconsistent with that expected for the SbCl₆ salt of 1 but in good agreement with that calculated for the SbCl₆ salt of 2.

It is concluded that the first *N*-nitrosiminium ion salt is yet to be isolated. We have not investigated the mechanism by which the product 2 is formed from the given reagents, but 2 (presumably the BF₄ salt) is formed upon addition of NOBF₄ to the starting imine (eq 1) in CDCl₃ that had been stored over molecular seives.

Acknowledgment. This work was supported by grants RO1 CA52881 and KO4 CA62124 from the National Cancer Institute. Prof. Huw M. L. Davies (SUNY at Buffalo) first suggested the identity of the product 2. We are most grateful to Prof. Manfred Wiessler for discussions concerning the original work.

JO951545S

⁽¹⁾ Wiessler, M. *N-Nitrosamines*; Anselme, J.-P., Ed.; American Chemical Society: Washington, D. C., 1979; p 57.

(2) Revis, C.; Rajamäki, M.; Fishbein, J. C. *J. Org. Chem.* **1995**, *60*,

⁽³⁾ Schenk, P. W. In Handbook of Preparative Inorganic Chemistry, Brauer, G., Ed.; Academic Press: New York, 1963; Chapter 8, Vol. 1, p 511.

⁽⁴⁾ Vigroux, A.; Kresge, A. J.; Fishbein, J. C. J. Am. Chem. Soc. 1995,

⁽⁵⁾ Baldwin, J. E.; Scott, A.; Branz, S. E.; Tannenbaum, S. R.; Green, L. J. Org. Chem. 1978, 43, 2427.

⁽⁶⁾ Olah, G. A.; Donovan, D. J. J. Org. Chem. 1978, 43, 860. (7) This NH to methyl coupling is variable, with the signal from the methyl group appearing as a broadened singlet in some samples that otherwise give identical spectra.
(8) Olah, G. A.; Kreienbuhl, P. J. Am. Chem. Soc. 1967, 89, 4756.